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Exercice 1. Nous avons dim(V') =5 (c’est le degré de x). Les valeurs propres sont 7 et
—2.

Les multiplicités du polynéme caractéristiques nous informent qu’une forme de Jordan
de f doit avoir 3 fois la valeur 7 et 2 fois la valeur —2 sur la diagonal.

Les multiplicités du polynéme minimal nous informent qu’il y a au moins un bloc de
Jordan de taille 2 pour la valeur propre A = 7 et que les autres blocs sont de taille < 2
(donc de taille 1) Pour la valeur propre A = —2 tous les blocs sont de taille 1.

La seule forme normale de Jordan possible (& permutation des blocs pres) est donc

710 0 O
070 0 O
(Mo () h(-2)d1(-2)=] 007 0 0
000 -2 0
000 0 =2
Exercice 2. a) On sait que les racines de j4 sont exactement les valeurs propres de

A donc le spectre de A est o(A) ={0,1,2}.
b) Non. (Le polynéme minimal posséde une racine double)
¢) On commence par une remarque. On a

rang(A) = dim(V) — dim(Ker(A))
= dim(V) — dim(E))
= dim(V) — s,

ou s est le nombre de blocs de Jordan pour la valeur propre 0. Comme dim(V') = 6
et rang(A) = 4, on en déduit que s = 2.

Soit « la transformation linéaire de V' = C°® définie par A relativement & la
base canonique. On décompose le polyndéme minimal : 4 = X (X — 1)(X — 2)2

D’apres le premier paragraphe, il existe exactement deux blocs de Jordan pour
la valeur propre 0.

D’apres le cours, la taille du plus grand bloc de Jordan pour une valeur propre
A est égal a la multiplicité de A dans le polyndome minimal. Donc la taille du plus
grand bloc de Jordan pour la valeur propre 0 (respectivement 1) est égale a 1, et
celle pour 2 vaut 2. Donc il existe les blocs suivants : deux J;(0), au moins un
J1(1) et au moins un Jo(2).

Cependant, si on regarde la taille de A, 6 #5=2x1+1x1+1 x 2, donc
il existe encore un autre bloc de Jordan de taille 1 x 1, disons J;(A). 11 suffit de
déterminer la valeur propre .
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Cette valeur propre ne peut pas étre 0, car sinon, on aurait trois blocs pour la
valeur propre zéro.

Si A =1, alors la forme canonique de Jordan de A est

000O0O0O0
0000O00O0
001000
L)@ A0 e e eh@ =1 3501 00
000021
00000 2
Si A = 2, alors les blocs de Jordan de A sont
000O0O00O0
000O0O0O0
001000
L)@ h0)ehWeh@eh@ =349 0 0
000021
00000 2

Maintenant on détermine les multiplicités géométriques des valeurs propres
de A. On sait que le nombre de blocs de Jordan pour une valeur propre A est
la mutiplicité géométrique de cette valeur propre (Xhéoreme de Jordan 9.5.2 et
9.6.1).

Dans le premier cas, multgeom(0) = 2, multgeom(1) = 2 et multgeom(2) = 1;

dans le deuxieme cas, multgeom(0) = 2, multgeom(1) = 1 et multgeom(2) = 2.

Exercice 3. On calcule que

00 40 0000
., oo o0 o0 ., oo o0 o0
B=1loooo| % =loo0o0o0
0000 0000

Ainsi B est nilpotente d’ordre 3, la seule valeur propre est A = 0, le rang de B est 2 et
le rang de B? est 1. On voit aussi que le polyndéme minimal est pup = X3 et le polynome
caractéristique est yp = X* . On déduit de ce qui préceéde que la forme normale de Jordan
est

J[B] = J3(0) @ J1(0) =

o O O O
SO O
o O = O
o O OO
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Cherchons une base de Jordan, elle contient un cycle de longueur 3 et un cycle de
longueur 1

1. Pour construire le cycle de longueur 3, on cherche un vecteur X3 € Ker(B?) qui
n’appartient pas Ker(B?). On peut prendre X3 = (0,0,1,0) et on a alors

Xy = . Xo=BX;= ., Xy =BX,=B’X;=

O = OO
N O OO
O O O =

Observons que X est un vecteur propre de B (pour A = 0, donc un élément du
noyau de B).

2. Pour construire le cycle de longueur 1 on cherche un autre vecteur propre (i.e. un
élément du noyau) Y; qui soit linéairement indépendant de X;. On peut prendre
Y1 =(0,2,0,—1).

On a donc trouvé notre base de Jordan { X7, X5, X3,Y;}. On pose alors

0 0
0 2
1 0
0 -1

O O O =
N O OO

et on vérifie que Q' BQ = J[B] (ou si on préfere BQ = J[B|Q).

Exercice 4. En examinant le tableau, on voit par exemple que
dim(Ker(M — 7iIy)?) + dim(Ker(M 4+ v319)> =5+4 =9,

donc

Ker(M — 7ily)® @ Ker(M + v/319)* = K°

En effet le lemme des noyaux nous dit que Ker(M — 7i Ig)> N Ker(M ++/31y)? = {0}, donc
on a bien une somme directe et additivité des dimensions. La décomposition ci-dessous
est donc la décomposition primaire de I'espace K pour la matrice M. En particulier :
1. Il n’y a pas d’autre valeur propre, le spectre de la matrice est o(M) = {—/3, 7i}.
2. L’espace caractéristique pour la valeur propre 7i est Ny; = Ker(M — Tilg)? et sa
dimension est 5.
3. L’espace caractéristique pour la valeur propre —v/3 est N_ 3 = Ker(M + \/319)2
et sa dimension est 4.

4. Le polyndme caractéristique est donc yur(X) = (X — 70)>(X + v/3)*.



EPFL - Printemps 2025 Alexis Michelat
Algebre linéaire avancée II Section de Physique Exercices
Solution 7 3 avril 2025

5. Le polynome minimal est g1y (X) = (X —74)3(X ++/3)? car on a d’aprés le théoréme
de décomposition primaire

Ker[(M — 7i1)*(M + v/31y)?] = Ker(M — 7ily)® @ Ker(M + v/31,)? = K,

ce qui signifie que (M — Tilg)>(M + /31y)? = 0, et d’autre part dim Ker[(M —
Tilg)* (M +v/31g)F2] < 9si ki < 3 ou ky < 2.

Les multiplicités géométriques des deux valeurs propres se lisent aussi dans le tableau,
elles valent 05(7i) = 0_,5(1) = 2, il y a donc deux blocs de Jordan pour chaque valeurs
propres et on sait qu’il y a au moins un bloc de Jordan de taille 3 pour la valeur propre
A = 5. On déduit alors que la forme normale de Jordan de M est

T[M] = J5(7) @ Jo(T5) @ Ja (—ﬁ) @ J (—\/5) .

Variante : On peut aussi directement calculer les nombres de blocs de Jordan de
taille & pour la valeur propre A (on note ce nombre par «a,(k)) par la formule vue au
cours :

Oé)\(k’) = 2(5)\<k') — 5)\<k + 1) — 5,\(l€ — 1)

(on pose §,(0) = 0 dans cette formule). Avec le tableau de Théodule cela nous donne
pour la valeur propre A\ = 71,

azi(1) =2x2—4 =0, a7;(2) =2x4-5-2 =1, ay(3) = 2x5-5—-4 =1, ay(4) = a(5) =
et pour la valeur propre A = —/3,
a_5(1) =2x2-4=0, a_z5(2) =2x4-4-2=2, a_z3)=a_z4)=a_z(5)=0.

A partir de ces valeur on écrit directement la forme normale de Jordan J[M| = J5(5) &
J3(5) @ Jo(—2) @ Jo(—2), et cette forme de Jordan nous permet d’écrire les polynomes
minimal et caractéristique.

On observe que les multiplicités généralisées 0, (k) généralisent les multiplicités géo-
métriques et que ces nombres codent toute l'information déterminant la structure de
I’endomorphisme associé a la matrice considérée. On exprime cela en disant que la fa-
mille des suites {0\(k)}reo(a)ken forme un systéme complet d’invariants de similitude
pour la matrice A
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Exercice 5. (a) L’affirmation (a) découle immédiatement du théoreme de réduction de
Jordan car tout polynoéme sur le corps des complexes est scindé.

On peut aussi raisonner directement : si A € My(C) est diagonalisable, nous n’avons rien a
prouver. On suppose donc que A n’est pas diagonalisable. En particulier la matrice A possede
exactement une valeur propre A € C et cette valeur propre est de multiplicité géométrique 1
(il existe au moins une valeur propre car x4(X) est un polynéme complexe, d’autre part s’il
existait deux valeurs propres distinctes, alors A serait diagonalisable, donc cette valeur propre
est unique, finalement si la multiplicité géométrique de cette valeur propre était 2, alors de
nouveau A serait diagonalisable).

On a donc dim(E)(A4)) = 1 et on peut donc trouver un vecteur w € C? \ E,(A). Notons
v = (f — Alz)(w) I'image de ce vecteur par (f — Alz). Par construction on a

f) =X v,  flw) = w+w.

Ces vecteurs sont linéairements indépendants (car w ¢ E))) et donc il forment une base de C2.

Dans cette base la matrice de I’endomorphisme s’écrit ( 3 }\ )

Cet argument un cas simple illustrant le principe de la preuve du théoreme de réduction de
Jordan (les vecteurs v, w forment un cycle de longueur 2 et donc la base {v,w} est une base de
Jordan).

(b) Supposons que A € Ms(R) posséde une ou deux valeurs propres réelles. Alors on
montre comme dans le cas précédent que A est ou bien diagonalisable, ou bien semblable
a la matrice J. Le cas qui reste a étudier est celui ou A ne possede aucune valeur propre
réelle. Mais dans ce cas, le polyndme caractéristique x4(X) posséde deux racines com-
plexes conjuguées, A = a + i et A = a — i 3. En particulier il existe un vecteur propre
complexe

v=wv+ivy € C*, tel que Av=(a—ifB)v, avec v, vy € R
En séparant les parties réelles et imaginaires, on trouve que
Avy = avy + B og, Avy = =By + avs.

Nous affirmons que v, et vy sont linéairement indépendants par rapport au corps R.
Supposons en effet que (par exemple) vy # 0 et vy = pv; avec p € R. Alors

Avi = auvy + vy = Avy, avec A= (a+pp) €R,

ce qui est impossible puisqu’on a supposé que la matrice A n’a pas de valeur propre
réelle. On a montré que {v;, v} est une base de R? et dans cette base, la matrice de
’endomorphisme A devient la matrice K (a, ). Par conséquent les matrices A et K sont
semblables.
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Exercice 6. a) Non. Par exemple, (1,0,---,0) (respectivement (0,1,0,---,0)) est
envoyé vers 1 (respectivement 0), mais (1,0,---,0)+(0,1,0,--- ,0) = (1,1,0,--- ,0)
est envoyé vers 0 # 1+ 0.
b) Non. Notons « 'application en question. Par exemple a(2-(1,0,0)) = a(2,0,0) =
11, mais
2.a(1,0,0) =26 =12 #£ 11 = (2~ (1,0,0)).

¢) Non. Notons « I'application en question et considérons un polynéme p(z) tel que

p(a) # 0, alors
2a(P) =2P(a)®#4P(a)’ =2 P).

d) Oui, car dans le corps Fy on a P(a)? = P(a), donc P'application en question est
I’évaluation en a, qui est une forme linéaire.

e) Oui, car application P +— P(a?) est 'évaluation du polynéme au point a? € Q et
c’est donc une forme linéaire (c’est la forme linéaire d,2).

f) Oui, car c’est la somme de deux formes linéaires : 'intégration + 1’évaluation en
1.

g) L’application det : M, (K) est une forme linéaire si et seulement si n = 1

Exercice 7. Nous proposons deux méthodes pour résoudre ce probleme. La premiere
utilise le fait, vu au cours, que si P est la matrice de transition de la base canonique {e;}

vers la base {v;}, alors la matrice de transition de la base canonique duale {¢;} vers la
base duale de {v;} est la matrice contragrédiente (P~1)".

Nous avons ici

(32 e 103 2
P—<23) donc (P)—5(_2 3>.

La base duale {¢1, p2} C (K?)* cherchée est donc donnée par

1 1
@1:5(361—2€2>, 902:5(—261+352),

oll on a noté €1, &5 la base duale de la base canonique {ej, es} de K2 Cela signifie que

1 1
<p1(:61,1:2) = 5(3:61 — 2.’152) @2(1’1,%2) = g(—QQ?l + 3.3(72)

Autre méthode : on cherche la base duale {¢1, s} C (K?)* en posant
o1(z,y) = ar +by,  @a(z,y) = cr +dy.
Les coefficients a, b, ¢, d sont déterminés par les relations de dualité :

©1(3,2) =3a+2b =1, ¢1(2,3) =2a+3b =0, 2(3,2) = 3c+2d =0, ¢3(2,3) = 2¢+3d = 1,
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c’est-a-dire

a b 32\ (10
c d 23) \01
2 2 2
On a donc a = §,b = —— et c=——,d = ——. Par conséquent on a
5 5 5 5

oey) =232 -20)  paley) = (-2 +3y)

Exercice 8. (a) Notons ~ la relation de congruence et montrons que c’est une relation
d’équivalence. Il est clair que pour toute matrice A € M, (K) on a A ~ A (il suffit de
choisir P =1,,).

Pour prouver la symétrie, i.e. B ~ A = A ~ B, on utilise que (P~1)T = (PT)7%
Donc s'il existe P € GL,(K) tel que B = PT AP, alors

A= P 'BP=(PH'BP™.

Il reste a prouver la transitivité, i.e. si A ~ Bet B ~ C, alors A ~ C. Pour cela on
raisonne comme suit : on suppose qu'il existe P,Q € GL,(K) tels que B = PTAP et
C = Q"BQ, alors

C=Q'BQ=C=Q"(PTAP)Q = (Q"P")A(PQ) = (PQ)"A(PQ),
ce qui implique que C' est congruente a A.

(b) Si les matrices sont a coefficients dans un corps K de caractéristique 2, alors B
est la matrice nulle et les deux matrices ne sont pas congruentes. Si le corps K est de
caractéristique # 2 (i.e. 1 +1 # 2), alors les matrices A et B sont congruentes.

2

0 2), qui nous donne

On peut par exemple prendre la matrice de transition P = (
B=PTAP.

(c) Les matrices C' et D sont congruentes sur le corps C et elles ne sont pas congruentes
sur le corps R. Pour le voir, examinons a quelles conditions les matrices C' et D sont
congruentes ; pour cela il faut trouver une matrice P € GLy(K) telle que PTCP = D.

Notons P = <Z Z) une telle matrice, alors on doit avoir
-1 0\ A~ pthp prp. [@P+V ac+bd
(0 —1)_D_PCP_PP_(ac+bd A+ d?

c’est-a-dire
A+ =+d*>=-1 et ad+bc=0.
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Les deux matrices sont donc congruentes si et seulement si on peut résoudre ces
équations dans le corps K. C’est clairement impossible si K = R et c’est possible si

K = C (on peut prendre la matrice de passage P = <é ?) avec i2 = —1).

(Les matrices C' et D sont également congruentes dans le corps a deux éléments Fy
car dans ce cas C' = D).

(d) La réponse est négative. Par exemple les matrices A et B de la question (b) sont
congruentes mais non semblables (par exemple parce qu’elles n’ont pas les mémes déter-
minants, ou simplement parce que la seule matrice semblable a I'identité est l'identité).

Exercice 9. a) Comme 0 # ¢, il existe un vecteur v € V tel que p(v) = o # 0, ce
qui montre que tout tout ¢ € K, on a p(a~'tv) = t, ce qui implique que ¢ est
surjective. Le théoreme du rang donne

dim(Ker(y)) = dim(V) — dim(Im (¢)) =n — 1.

b) Il s’agit d’un raisonnement en analyse-synthese. En effet, si on cherche une décom-
position sous la forme v = v' + au, on obtient f(v) = f(v') +a f(u) = a f(u), ce

f(v)

qui donne a = =———=. De plus, avec cette valeur de a, on obtient

f(u)

fu) =0,

et I'unicité de la décomposition découle de I’étape précédente.

c) Si Ker(¢;) = Ker(pg) = V, il n’y a rien a prouver. On peut donc supposer que
¢1 et 9 sont non identiquement nulles. Fixons u ¢ Ker(¢1) U Ker(y2) (qui existe
car Ker(p;) = Ker(ps)). La question précédente montre que pour tout v € V, il
existe v € Ker(g;) et v” € Ker(g2) tels que

v = + 901<v)u — " + 902(1))

©1(u) ©a(u)

Par conséquent, on a v" —v"” € Ker(p;) N Ker(ys), ce qui donne en particulier
p1(v) = ") =0.
Or, on a

o — " = P1(v)pa(u) — pa(u)pr(u)
p1(u)p2(u)

u,
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et comme u ¢ Ker(py), ceci implique que pour tout v € V', on a

0 = p1(v)pa(u) — pa(u)pi(u) = det (ZZEZ% zzgzD ' .

Par conséquent, pour tout v € Vil existe A(v) € K* (car o1 (u)pa(u) # 0) tel que

() =20 (20):
©1(u)
©a(u)

(bien entendu, on pouvait résoudre 1’équation directement a I’aide de (1), mais il
est parfois intéressant de raisonner de maniére plus algébrique).

Par conséquent, on obtient A(v) =

qui est constant, et le résultat s’ensuit



