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Exercice 1. Nous avons dim(V ) = 5 (c’est le degré de χf ). Les valeurs propres sont 7 et
−2.

Les multiplicités du polynôme caractéristiques nous informent qu’une forme de Jordan
de f doit avoir 3 fois la valeur 7 et 2 fois la valeur −2 sur la diagonal.

Les multiplicités du polynôme minimal nous informent qu’il y a au moins un bloc de
Jordan de taille 2 pour la valeur propre λ = 7 et que les autres blocs sont de taille < 2
(donc de taille 1) Pour la valeur propre λ = −2 tous les blocs sont de taille 1.

La seule forme normale de Jordan possible (à permutation des blocs près) est donc

J2(7) ⊕ J1(7) ⊕ J1(−2) ⊕ J1(−2) =


7 1 0 0 0
0 7 0 0 0
0 0 7 0 0
0 0 0 −2 0
0 0 0 0 −2



Exercice 2. a) On sait que les racines de µA sont exactement les valeurs propres de
A donc le spectre de A est σ(A) = {0, 1, 2}.

b) Non. (Le polynôme minimal possède une racine double)
c) On commence par une remarque. On a

rang(A) = dim(V ) − dim(Ker(A))
= dim(V ) − dim(E0)
= dim(V ) − s,

où s est le nombre de blocs de Jordan pour la valeur propre 0. Comme dim(V ) = 6
et rang(A) = 4, on en déduit que s = 2.

Soit α la transformation linéaire de V = C6 définie par A relativement à la
base canonique. On décompose le polynôme minimal : µA = X(X − 1)(X − 2)2.

D’après le premier paragraphe, il existe exactement deux blocs de Jordan pour
la valeur propre 0.

D’après le cours, la taille du plus grand bloc de Jordan pour une valeur propre
λ est égal à la multiplicité de λ dans le polynôme minimal. Donc la taille du plus
grand bloc de Jordan pour la valeur propre 0 (respectivement 1) est égale à 1, et
celle pour 2 vaut 2. Donc il existe les blocs suivants : deux J1(0), au moins un
J1(1) et au moins un J2(2).

Cependant, si on regarde la taille de A, 6 ̸= 5 = 2 × 1 + 1 × 1 + 1 × 2, donc
il existe encore un autre bloc de Jordan de taille 1 × 1, disons J1(λ). Il suffit de
déterminer la valeur propre λ.
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Cette valeur propre ne peut pas être 0, car sinon, on aurait trois blocs pour la
valeur propre zéro.

Si λ = 1, alors la forme canonique de Jordan de A est

J1(0) ⊕ J1(0) ⊕ J1(1) ⊕ J1(1) ⊕ J2(2) =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 2 1
0 0 0 0 0 2

 .

Si λ = 2, alors les blocs de Jordan de A sont

J1(0) ⊕ J1(0) ⊕ J1(1) ⊕ J1(2) ⊕ J2(2) =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 2 1
0 0 0 0 0 2

 .

Maintenant on détermine les multiplicités géométriques des valeurs propres
de A. On sait que le nombre de blocs de Jordan pour une valeur propre λ est
la mutiplicité géométrique de cette valeur propre (Xhéorème de Jordan 9.5.2 et
9.6.1).

Dans le premier cas, multgeom(0) = 2, multgeom(1) = 2 et multgeom(2) = 1 ;
dans le deuxième cas, multgeom(0) = 2, multgeom(1) = 1 et multgeom(2) = 2.

Exercice 3. On calcule que

B2 =


0 0 4 0
0 0 0 0
0 0 0 0
0 0 0 0

 et B3 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

Ainsi B est nilpotente d’ordre 3, la seule valeur propre est λ = 0, le rang de B est 2 et
le rang de B2 est 1. On voit aussi que le polynôme minimal est µB = X3 et le polynôme
caractéristique est χB = X4 . On déduit de ce qui précède que la forme normale de Jordan
est

J [B] = J3(0) ⊕ J1(0) =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0


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Cherchons une base de Jordan, elle contient un cycle de longueur 3 et un cycle de
longueur 1

1. Pour construire le cycle de longueur 3, on cherche un vecteur X3 ∈ Ker(B3) qui
n’appartient pas Ker(B2). On peut prendre X3 = (0, 0, 1, 0) et on a alors

X3 =


0
0
1
0

 , X2 = BX3 =


0
0
0
2

 , X1 = BX2 = B2X3 =


4
0
0
0

 .

Observons que X1 est un vecteur propre de B (pour λ = 0, donc un élément du
noyau de B).

2. Pour construire le cycle de longueur 1 on cherche un autre vecteur propre (i.e. un
élément du noyau) Y1 qui soit linéairement indépendant de X1. On peut prendre
Y1 = (0, 2, 0, −1).

On a donc trouvé notre base de Jordan {X1, X2, X3, Y1}. On pose alors

Q =


4 0 0 0
0 0 0 2
0 0 1 0
0 2 0 −1


et on vérifie que Q−1BQ = J [B] (ou si on préfère BQ = J [B]Q).

Exercice 4. En examinant le tableau, on voit par exemple que

dim(Ker(M − 7i I9)3) + dim(Ker(M +
√

3 I9)2 = 5 + 4 = 9,

donc
Ker(M − 7i I9)3 ⊕ Ker(M +

√
3 I9)2 = K9

En effet le lemme des noyaux nous dit que Ker(M −7i I9)3 ∩Ker(M +
√

3I9)2 = {0}, donc
on a bien une somme directe et additivité des dimensions. La décomposition ci-dessous
est donc la décomposition primaire de l’espace K9 pour la matrice M . En particulier :

1. Il n’y a pas d’autre valeur propre, le spectre de la matrice est σ(M) = {−
√

3, 7i}.
2. L’espace caractéristique pour la valeur propre 7i est N7i = Ker(M − 7i I9)3 et sa

dimension est 5.
3. L’espace caractéristique pour la valeur propre −

√
3 est N−

√
3 = Ker(M +

√
3I9)2

et sa dimension est 4.
4. Le polynôme caractéristique est donc χM(X) = (X − 7i)5(X +

√
3)4.
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5. Le polynôme minimal est µM(X) = (X−7i)3(X+
√

3)2 car on a d’après le théorème
de décomposition primaire

Ker[(M − 7i I9)3(M +
√

3 I9)2] = Ker(M − 7iI9)3 ⊕ Ker(M +
√

3 I9)2 = K9,

ce qui signifie que (M − 7i I9)3(M +
√

3 I9)2 = 0, et d’autre part dim Ker[(M −
7i I9)k1(M +

√
3 I9)k2 ] < 9 si k1 < 3 ou k2 < 2.

Les multiplicités géométriques des deux valeurs propres se lisent aussi dans le tableau,
elles valent δ5(7i) = δ−

√
3(1) = 2, il y a donc deux blocs de Jordan pour chaque valeurs

propres et on sait qu’il y a au moins un bloc de Jordan de taille 3 pour la valeur propre
λ = 5. On déduit alors que la forme normale de Jordan de M est

J [M ] = J3(7i) ⊕ J2(7i) ⊕ J2

(
−

√
3
)

⊕ J2

(
−

√
3
)

.

Variante : On peut aussi directement calculer les nombres de blocs de Jordan de
taille k pour la valeur propre λ (on note ce nombre par αλ(k)) par la formule vue au
cours :

αλ(k) = 2δλ(k) − δλ(k + 1) − δλ(k − 1)

(on pose δλ(0) = 0 dans cette formule). Avec le tableau de Théodule cela nous donne
pour la valeur propre λ = 7i,

α7i(1) = 2×2−4 = 0, α7i(2) = 2×4−5−2 = 1, α7i(3) = 2×5−5−4 = 1, α7i(4) = α7i(5) = 0,

et pour la valeur propre λ = −
√

3,

α−
√

3(1) = 2×2−4 = 0, α−
√

3(2) = 2×4−4−2 = 2, α−
√

3(3) = α−
√

3(4) = α−
√

3(5) = 0.

A partir de ces valeur on écrit directement la forme normale de Jordan J [M ] = J2(5) ⊕
J3(5) ⊕ J2(−2) ⊕ J2(−2), et cette forme de Jordan nous permet d’écrire les polynômes
minimal et caractéristique.

On observe que les multiplicités généralisées δλ(k) généralisent les multiplicités géo-
métriques et que ces nombres codent toute l’information déterminant la structure de
l’endomorphisme associé à la matrice considérée. On exprime cela en disant que la fa-
mille des suites {δλ(k)}λ∈σ(A),k∈N forme un système complet d’invariants de similitude
pour la matrice A
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Exercice 5. (a) L’affirmation (a) découle immédiatement du théorème de réduction de
Jordan car tout polynôme sur le corps des complexes est scindé.

On peut aussi raisonner directement : si A ∈ M2(C) est diagonalisable, nous n’avons rien à
prouver. On suppose donc que A n’est pas diagonalisable. En particulier la matrice A possède
exactement une valeur propre λ ∈ C et cette valeur propre est de multiplicité géométrique 1
(il existe au moins une valeur propre car χA(X) est un polynôme complexe, d’autre part s’il
existait deux valeurs propres distinctes, alors A serait diagonalisable, donc cette valeur propre
est unique, finalement si la multiplicité géométrique de cette valeur propre était 2, alors de
nouveau A serait diagonalisable).

On a donc dim(Eλ(A)) = 1 et on peut donc trouver un vecteur w ∈ C2 \ Eλ(A). Notons
v = (f − λI2)(w) l’image de ce vecteur par (f − λI2). Par construction on a

f(v) = λv, f(w) = λw + v.

Ces vecteurs sont linéairements indépendants (car w ̸∈ Eλ)) et donc il forment une base de C2.

Dans cette base la matrice de l’endomorphisme s’écrit
(

λ 1
0 λ

)
.

Cet argument un cas simple illustrant le principe de la preuve du théorème de réduction de
Jordan (les vecteurs v, w forment un cycle de longueur 2 et donc la base {v, w} est une base de
Jordan).

(b) Supposons que A ∈ M2(R) possède une ou deux valeurs propres réelles. Alors on
montre comme dans le cas précédent que A est ou bien diagonalisable, ou bien semblable
à la matrice J . Le cas qui reste à étudier est celui où A ne possède aucune valeur propre
réelle. Mais dans ce cas, le polynôme caractéristique χA(X) possède deux racines com-
plexes conjuguées, λ = α + i β et λ = α − i β. En particulier il existe un vecteur propre
complexe

v = v1 + i v2 ∈ C2, tel que Av = (α − i β)v, avec v1, v2 ∈ R2.

En séparant les parties réelles et imaginaires, on trouve que

Av1 = α v1 + β v2, Av2 = −β v1 + α v2.

Nous affirmons que v1 et v2 sont linéairement indépendants par rapport au corps R.
Supposons en effet que (par exemple) v1 ̸= 0 et v2 = ρ v1 avec ρ ∈ R. Alors

Av1 = α v1 + β v2 = λ v1, avec λ = (α + ρ β) ∈ R,

ce qui est impossible puisqu’on a supposé que la matrice A n’a pas de valeur propre
réelle. On a montré que {v1, v2} est une base de R2 et dans cette base, la matrice de
l’endomorphisme A devient la matrice K(α, β). Par conséquent les matrices A et K sont
semblables.
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Exercice 6. a) Non. Par exemple, (1, 0, · · · , 0) (respectivement (0, 1, 0, · · · , 0)) est
envoyé vers 1 (respectivement 0), mais (1, 0, · · · , 0)+(0, 1, 0, · · · , 0) = (1, 1, 0, · · · , 0)
est envoyé vers 0 ̸= 1 + 0.

b) Non. Notons α l’application en question. Par exemple α(2 · (1, 0, 0)) = α(2, 0, 0) =
11, mais

2 · α(1, 0, 0) = 2 · 6 = 12 ̸= 11 = α(2 · (1, 0, 0)).
c) Non. Notons α l’application en question et considérons un polynôme p(x) tel que

p(a) ̸= 0, alors
2 α(P ) = 2 P (a)2 ̸= 4 P (a)2 = α(2 · P ).

d) Oui, car dans le corps F2 on a P (a)2 = P (a), donc l’application en question est
l’évaluation en a, qui est une forme linéaire.

e) Oui, car l’application P 7→ P (a2) est l’évaluation du polynôme au point a2 ∈ Q⃗ et
c’est donc une forme linéaire (c’est la forme linéaire δa2).

f) Oui, car c’est la somme de deux formes linéaires : l’intégration + l’évaluation en
1.

g) L’application det : Mn(K) est une forme linéaire si et seulement si n = 1

Exercice 7. Nous proposons deux méthodes pour résoudre ce problème. La première
utilise le fait, vu au cours, que si P est la matrice de transition de la base canonique {ei}
vers la base {vi}, alors la matrice de transition de la base canonique duale {εi} vers la
base duale de {vi} est la matrice contragrédiente (P −1)⊤.

Nous avons ici

P =
(

3 2
2 3

)
donc (P −1)⊤ = 1

5

(
3 −2

−2 3

)
.

La base duale {φ1, φ2} ⊂ (K2)∗ cherchée est donc donnée par

φ1 = 1
5(3 ε1 − 2 ε2), φ2 = 1

5(−2 ε1 + 3 ε2),

où on a noté ε1, ε2 la base duale de la base canonique {e1, e2} de K2. Cela signifie que

φ1(x1, x2) = 1
5(3x1 − 2x2) φ2(x1, x2) = 1

5(−2x1 + 3x2).

Autre méthode : on cherche la base duale {φ1, φ2} ⊂ (K2)∗ en posant

φ1(x, y) = ax + by, φ2(x, y) = cx + dy.

Les coefficients a, b, c, d sont déterminés par les relations de dualité :

φ1(3, 2) = 3a+2b = 1, φ1(2, 3) = 2a+3b = 0, φ2(3, 2) = 3c+2d = 0, φ2(2, 3) = 2c+3d = 1,
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c’est-à-dire (
a b
c d

)(
3 2
2 3

)
=

(
1 0
0 1

)
On a donc a = 3

5 , b = −2
5 et c = −2

5 , d = −2
5. Par conséquent on a

φ1(x, y) = 1
5(3 x − 2 y) φ2(x, y) = 1

5(−2 x + 3 y).

Exercice 8. (a) Notons ∼ la relation de congruence et montrons que c’est une relation
d’équivalence. Il est clair que pour toute matrice A ∈ Mn(K) on a A ∼ A (il suffit de
choisir P = In).

Pour prouver la symétrie, i.e. B ∼ A ⇒ A ∼ B, on utilise que (P −1)⊤ = (P ⊤)−1.
Donc s’il existe P ∈ GLn(K) tel que B = P ⊤AP , alors

A = (P ⊤)−1BP −1 = (P −1)⊤BP −1.

Il reste à prouver la transitivité, i.e. si A ∼ B et B ∼ C, alors A ∼ C. Pour cela on
raisonne comme suit : on suppose qu’il existe P, Q ∈ GLn(K) tels que B = P ⊤AP et
C = Q⊤BQ, alors

C = Q⊤BQ = C = Q⊤(P ⊤AP )Q = (Q⊤P ⊤)A(PQ) = (PQ)⊤A(PQ),

ce qui implique que C est congruente à A.

(b) Si les matrices sont à coefficients dans un corps K de caractéristique 2, alors B
est la matrice nulle et les deux matrices ne sont pas congruentes. Si le corps K est de
caractéristique ̸= 2 (i.e. 1 + 1 ̸= 2), alors les matrices A et B sont congruentes.

On peut par exemple prendre la matrice de transition P =
(

2 0
0 2

)
, qui nous donne

B = P ⊤AP .

(c) Les matrices C et D sont congruentes sur le corps C et elles ne sont pas congruentes
sur le corps R. Pour le voir, examinons à quelles conditions les matrices C et D sont
congruentes ; pour cela il faut trouver une matrice P ∈ GL2(K) telle que P ⊤CP = D.

Notons P =
(

a b
c d

)
une telle matrice, alors on doit avoir

(
−1 0
0 −1

)
= D = P ⊤CP = P ⊤P =

(
a2 + b2 ac + bd
ac + bd c2 + d2

)
c’est-à-dire

a2 + b2 = c2 + d2 = −1 et ad + bc = 0.
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Les deux matrices sont donc congruentes si et seulement si on peut résoudre ces
équations dans le corps K. C’est clairement impossible si K = R et c’est possible si
K = C (on peut prendre la matrice de passage P =

(
i 0
0 i

)
avec i2 = −1).

(Les matrices C et D sont également congruentes dans le corps à deux éléments F2
car dans ce cas C = D).

(d) La réponse est négative. Par exemple les matrices A et B de la question (b) sont
congruentes mais non semblables (par exemple parce qu’elles n’ont pas les mêmes déter-
minants, ou simplement parce que la seule matrice semblable à l’identité est l’identité).

Exercice 9. a) Comme 0 ̸= φ, il existe un vecteur v ∈ V tel que φ(v) = α ̸= 0, ce
qui montre que tout tout t ∈ K, on a φ(α−1tv) = t, ce qui implique que φ est
surjective. Le théorème du rang donne

dim(Ker(φ)) = dim(V ) − dim(Im (φ)) = n − 1.

b) Il s’agit d’un raisonnement en analyse-synthèse. En effet, si on cherche une décom-
position sous la forme v = v′ + a u, on obtient f(v) = f(v′) + a f(u) = a f(u), ce

qui donne a = f(v)
f(u) . De plus, avec cette valeur de a, on obtient

f(v − a u) = f(v) − f(v)
f(u)f(u) = 0,

et l’unicité de la décomposition découle de l’étape précédente.
c) Si Ker(φ1) = Ker(φ2) = V , il n’y a rien à prouver. On peut donc supposer que

φ1 et φ2 sont non identiquement nulles. Fixons u /∈ Ker(φ1) ∪ Ker(φ2) (qui existe
car Ker(φ1) = Ker(φ2)). La question précédente montre que pour tout v ∈ V , il
existe v′ ∈ Ker(φ1) et v′′ ∈ Ker(φ2) tels que

v = v′ + φ1(v)
φ1(u)u = v′′ + φ2(v)

φ2(u)u.

Par conséquent, on a v′ − v′′ ∈ Ker(φ1) ∩ Ker(φ2), ce qui donne en particulier

φ1(v′ − v′′) = 0.

Or, on a

v′ − v′′ = φ1(v)φ2(u) − φ2(u)φ1(u)
φ1(u)φ2(u) u,
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et comme u /∈ Ker(φ1), ceci implique que pour tout v ∈ V , on a

0 = φ1(v)φ2(u) − φ2(u)φ1(u) = det
(

φ1(v) φ2(v)
φ1(u) φ2(u)

)
. (1)

Par conséquent, pour tout v ∈ V , il existe λ(v) ∈ K∗ (car φ1(u)φ2(u) ̸= 0) tel que(
φ1(v)
φ1(u)

)
= λ(v)

(
φ2(v)
φ2(u)

)
.

Par conséquent, on obtient λ(v) = φ1(u)
φ2(u) qui est constant, et le résultat s’ensuit

(bien entendu, on pouvait résoudre l’équation directement à l’aide de (1), mais il
est parfois intéressant de raisonner de manière plus algébrique).
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